Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Conditionally Dependent Classifier Fusion Using AND Rule for Improved Biometric Verification
Ist Teil von
Lecture notes in computer science, 2005, p.277-286
Ort / Verlag
Berlin, Heidelberg: Springer Berlin Heidelberg
Erscheinungsjahr
2005
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
Statistical dependence of classifiers has recently been shown to improve accuracy over statistically independent classifiers. In this paper, we focus on the verification application and theoretically analyze the AND fusion rule to find the favorable conditional dependence that improves the fusion accuracy over conditionally independent classifiers. Based on this analysis, we come with a method to design such classifiers by training the classifiers on different partitions of the training data. The AR face database is used for performance evaluation and the proposed method has a false rejection rate (FRR) of 2.4% and a false acceptance rate of 3.3% on AND fusion, which is better than an FRR of 3.8% and FAR of 4.3% when classifiers are designed without taking account the AND fusion rule.