Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Dependently Typed Records for Representing Mathematical Structure
Ist Teil von
Lecture notes in computer science, 2000, p.462-479
Ort / Verlag
Berlin, Heidelberg: Springer Berlin Heidelberg
Erscheinungsjahr
2000
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
Consider a statement about groups “For G a group, ...”. A naive approach to formalize this is to unfold the meaning of group, so that every statement about groups begins with 1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
For\,\,G\,\,a\,\,set,\,\, + \,an\,\,operation\,\,on\,\,G,\,\, + \,\,associative,\,\,e\,\, \in \,\,G,\,...
$$\end{document}
This “unpackaged” approach can be improved by collecting all the parts of the meaning of group into a context, which need not be explicitly mentioned in every statement. A means of discharging some of the context is provided, so that statements made under that context can be instantiated with particular groups. However once that group context is discharged, all the parts of a group must be mentioned when using any general lemma about groups. Variations on this are supported by many proof tools, e.g. Coq’s Section mechanism [Coq99], Lego’s Discharge [LEG99], Automath contexts and Isabelle locales.