Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Amyloidosis is a pathological process in which normally soluble proteins polymerize to form insoluble fibrils (amyloid). Amyloid formation is found in a number of diseases, including Alzheimer's disease, adult-onset diabetes, and light-chain-associated amyloidosis. No pharmaceutical methods currently exist to prevent this process or to remove the fibrils from tissue. The search for treatment and prevention methods is hampered by a limited understanding of the biophysical basis of amyloid formation. Glycosaminoglycans (GAGs) are long, unbranched heteropolysaccharides composed of repeating disaccharide subunits and are known to associate with amyloid fibrils. The interaction of amyloid-associated free light chains with GAGs was tested by both size-exclusion high-performance liquid chromatography and sodium dodecyl sulfate−polyacrylamide gel electrophoresis experiments. The results indicated that heparin 16 000 and chondroitin sulfate B and C precipitated both human intact light chains and recombinant light chain variable domains. Although all light chains interacted with heparin, the strongest interactions were obtained with proteins that had formed amyloid. Molecular modeling indicated the possibility of interaction between heparin and the conserved saddlelike surface of the light chain dimer opposite the complementarity-determining segments that form part of the antigen-binding site of a functional antibody. This suggestion might offer a new path to block the aggregation of amyloid-associated light chain proteins, by design of antagonists based on properties of GAG binding. A hexasaccharide was modeled as the basis for a possible antagonist.