Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 24 von 157
Journal of materials chemistry. A, Materials for energy and sustainability, 2024-05, Vol.12 (18), p.11082-11089
2024
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Machine learning-empowered study of metastable γ-CsPbI 3 under pressure and strain
Ist Teil von
  • Journal of materials chemistry. A, Materials for energy and sustainability, 2024-05, Vol.12 (18), p.11082-11089
Ort / Verlag
United Kingdom: Royal Society of Chemistry (RSC)
Erscheinungsjahr
2024
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Metastable γ-CsPbI 3 is a promising solar cell material due to its suitable band gap and chemical stability. While this metastable perovskite structure can be achieved via introducing external pressure or strain, experimenting with this material is still challenging due to its phase instability. In this work, we present the first instance of exploiting various machine learning (ML) models to efficiently predict the band gap and enthalpy of metastable γ-CsPbI 3 under pressure or strain while identifying key structural features that determine these properties. ML models trained on experimentally benchmarked, first-principles calculation datasets exhibit excellent performance in predicting the behavior of tuned systems, comparable to predictions made for ambient material databases. In particular, graph neural networks (GNNs) that explicitly include a graph encoding the bond angle information outperform other ML models in most scenarios. The pressure-tuned system demonstrates a strong linear relationship between structural features and properties, effectively captured by global structural features using linear regression models. In contrast, the strain-tuned system shows a non-linear relationship, exhibiting superior prediction performance using GNNs trained on local environments. This study opens up opportunities to apply and develop ML models for understanding and designing materials under extreme conditions.
Sprache
Englisch
Identifikatoren
ISSN: 2050-7488
eISSN: 2050-7496
DOI: 10.1039/D4TA00174E
Titel-ID: cdi_osti_scitechconnect_2335965
Format

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX