Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 6 von 252
Biochemical and biophysical research communications, 2016-10, Vol.479 (3), p.502-509
2016
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Overexpression of ZIC5 promotes proliferation in non-small cell lung cancer
Ist Teil von
  • Biochemical and biophysical research communications, 2016-10, Vol.479 (3), p.502-509
Ort / Verlag
United States: Elsevier Inc
Erscheinungsjahr
2016
Quelle
Elsevier ScienceDirect Journals
Beschreibungen/Notizen
  • Non-small cell lung cancer (NSCLC) has become the leading cause of cancer-related deaths. It is therefore urgent that we identify new molecular targets to help cure NSCLC patients. Here, we identified ZIC5 as a potential novel oncogene. We detected the expression of ZIC5 in tumor and normal tissues of NSCLC patients using quantitative real-time PCR and explored its clinical appearance. We then knocked down ZIC5 to observe changes in NSCLC cell proliferation and metastasis. Nude mouse xenograft models were established to measure ZIC5's function in vivo. Our results revealed that ZIC5 was expressed at dramatically higher levels in NSCLC tumor tissues than in normal tissues. High levels of ZIC5 expression were associated with a higher primary tumor grade. ZIC5 expression was significantly inhibited by small interfering RNA. After silencing ZIC5, the metastatic capacity of NSCLC cells was clearly lower. Knocking down ZIC5 significantly inhibited the proliferation of NSCLC cells, causing the cell cycle to be arrested in G2 phase. Xenograft tumor models showed that knocking down ZIC5 also inhibited tumor growth in vivo. Q-PCR and western blot analysis revealed that ZIC5 expression was closely associated with CCNB1 and CDK1 complex expression, while other cell cycle-related genes showed no significant correlation with ZIC5. Our experiment show that ZIC5 is highly upregulated in NSCLC tumor tissues and suggest that ZIC5 may act as an oncogene by influencing CCNB1 and CDK1 complex expression. ZIC5 may therefore be a potential biomarker and therapeutic target for NSCLC patients.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX