Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 25 von 50

Details

Autor(en) / Beteiligte
Titel
Bacterial community dynamics explain carbon mineralization and assimilation in soils of different land‐use history
Ist Teil von
  • Environmental microbiology, 2022-11, Vol.24 (11), p.5230-5247
Ort / Verlag
Hoboken, USA: John Wiley & Sons, Inc
Erscheinungsjahr
2022
Quelle
Wiley-Blackwell Journals
Beschreibungen/Notizen
  • Soil dwelling microorganisms are key players in the terrestrial carbon cycle, driving both the degradation and stabilization of soil organic matter. Bacterial community structure and function vary with respect to land use; yet the ecological drivers of this variation remain poorly described and difficult to predict. We conducted a multi‐substrate DNA‐stable isotope probing experiment across cropland, old‐field, and forest habitats to link carbon mineralization dynamics with the dynamics of bacterial growth and carbon assimilation. We tracked the movement of 13C derived from five distinct carbon sources as it was assimilated into bacterial DNA over time. We show that carbon mineralization, community composition, and carbon assimilation dynamics all differed with respect to land use. We also show that microbial community dynamics affect carbon assimilation dynamics and are associated with soil DNA content. Soil DNA yield is easy to measure and may be useful in predicting microbial community dynamics linked to soil carbon cycling. Soil dwelling microorganisms are key players in the terrestrial carbon cycle, driving both the degradation and stabilization of soil organic matter. Microbial communities vary with respect to land use, but we still have an incomplete understanding of how variation in community structure links to variation in community function. DNA stable isotope probing (DNA‐SIP) is a high‐resolution method that can identify specific microbial taxa that assimilate carbon in situ. We conducted a large‐scale multi‐substrate DNA‐SIP experiment to explore differences in bacterial activity across land‐use regimes. We show that microbial community dynamics vary with land use, that these dynamics are linked to soil carbon cycling, and that they are associated with easily measured soil properties.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX