Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Stellar and Total Baryon Mass Fractions in Groups and Clusters Since Redshift 1
Ist Teil von
The Astrophysical journal, 2009-09, Vol.703 (1), p.982-993
Ort / Verlag
Bristol: IOP Publishing
Erscheinungsjahr
2009
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
ABSTRACT
We investigate if the discrepancy between estimates of the total baryon mass fraction obtained from observations of the cosmic microwave background (CMB) and of galaxy groups/clusters persists when a large sample of groups is considered. To this purpose, 91 candidate X-ray groups/poor clusters at redshift 0.1 ⩽
z
⩽ 1 are selected from the COSMOS 2 deg
2
survey, based only on their X-ray luminosity and extent. This sample is complemented by 27 nearby clusters with a robust, analogous determination of the total and stellar mass inside
R
500
. The total sample of 118 groups and clusters with
z
⩽ 1 spans a range in
M
500
of ∼10
13
–10
15
M
☉
. We find that the stellar mass fraction associated with galaxies at
R
500
decreases with increasing total mass as
M
−0.37 ± 0.04
500
, independent of redshift. Estimating the total gas mass fraction from a recently derived, high-quality scaling relation, the total baryon mass fraction (
f
stars+gas
500
=
f
stars
500
+
f
gas
500
) is found to increase by ∼25%, when
M
500
increases from 〈
M
〉 = 5 × 10
13
M
☉
to 〈
M
〉 = 7 × 10
14
M
☉
. After consideration of a plausible contribution due to intracluster light (11%–22% of the total stellar mass) and gas depletion through the hierarchical assembly process (10% of the gas mass), the estimated values of the total baryon mass fraction are still lower than the latest CMB measure of the same quantity (WMAP5), at a significance level of 3.3σ for groups of 〈
M
〉 = 5 × 10
13
M
☉
. The discrepancy decreases toward higher total masses, such that it is 1σ at 〈
M
〉 = 7 × 10
14
M
☉
. We discuss this result in terms of nongravitational processes such as feedback and filamentary heating.