Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 10 von 230

Details

Autor(en) / Beteiligte
Titel
Bone morphogenetic protein-4 is overexpressed in colonic adenocarcinomas and promotes migration and invasion of HCT116 cells
Ist Teil von
  • Experimental cell research, 2007-03, Vol.313 (5), p.1033-1044
Ort / Verlag
United States: Elsevier Inc
Erscheinungsjahr
2007
Quelle
MEDLINE
Beschreibungen/Notizen
  • Bone morphogenetic protein (BMP), a member of the TGF-β superfamily, is involved in development, morphogenesis, cell proliferation and apoptosis. Dysregulation of BMP signaling has been suggested in tumorigenesis. In an analysis of human colon normal mucosa and tumors at different stages by immunohistochemistry, we observed that the intensity of BMP-4 staining in late-adenocarcinomas was stronger than that in normal mucosa and adenomas, while there was no difference in the staining of its receptors (BMPR-IA and BMPR-II) at all stages. The up-regulation of BMP-4 was further validated in another panel of tumor tissues by real-time RT–PCR, showing that BMP-4 mRNA levels in primary colonic carcinomas with liver metastasis were significantly higher than that in the matched normal mucosa. In order to understand the functional relevance of BMP-4 expression in colon cancer progression, BMP-4-overexpressing cell clones were generated from HCT116 cells. Overexpression of BMP-4 did not affect the HCT116 cell growth. The cells overexpressing BMP-4 became resistant to serum-starvation-induced apoptosis and exhibited enhanced migration and invasion characteristics. Overexpression of BMP-4 changed cell morphology to invasive spindle phenotype and induced the expression and activity of urokinase plasminogen activator (uPA). These results indicate that BMP-4 confers invasive phenotype during progression of colon cancer.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX