Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 13 von 381

Details

Autor(en) / Beteiligte
Titel
Unsupervised learning of ferroic variants from atomically resolved STEM images
Ist Teil von
  • AIP advances, 2022-10, Vol.12 (10), p.105122-105122-10
Ort / Verlag
Melville: American Institute of Physics
Erscheinungsjahr
2022
Quelle
Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
Beschreibungen/Notizen
  • An approach for the analysis of atomically resolved scanning transmission electron microscopy data with multiple ferroic variants in the presence of imaging non-idealities and chemical variabilities based on a rotationally invariant variational autoencoder (rVAE) is presented. We show that an optimal local descriptor for the analysis is a sub-image centered at specific atomic units, since materials and microscope distortions preclude the use of an ideal lattice as a reference point. The applicability of unsupervised clustering and dimensionality reduction methods is explored and is shown to produce clusters dominated by chemical and microscope effects, with a large number of classes required to establish the presence of rotational variants. Comparatively, the rVAE allows extraction of the angle corresponding to the orientation of ferroic variants explicitly, enabling straightforward identification of the ferroic variants as regions with constant or smoothly changing latent variables and sharp orientational changes. This approach allows further exploration of the chemical variability by separating the rotational degrees of freedom via rVAE and searching for remaining variability in the system. The code used in this article is available at https://github.com/saimani5/ferroelectric_domains_rVAE.
Sprache
Englisch
Identifikatoren
ISSN: 2158-3226
eISSN: 2158-3226
DOI: 10.1063/5.0105406
Titel-ID: cdi_osti_scitechconnect_1895172

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX