Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 8 von 38

Details

Autor(en) / Beteiligte
Titel
Effect of the 3D Structure and Grain Boundaries on Lithium Transport in Garnet Solid Electrolytes
Ist Teil von
  • ACS applied energy materials, 2021-05, Vol.4 (5), p.4786-4804
Ort / Verlag
United States: American Chemical Society
Erscheinungsjahr
2021
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Lithium metal anodes are vital enablers for high-energy all-solid-state batteries (ASSBs). To promote ASSBs in practical applications, performance limitations such as the high lithium interface resistance and the grain boundary resistance in the solid electrolyte (SE) need to be understood and reduced by optimization of the cell design. In this work, we use our 3D microstructure-resolved simulation approach combined with a modified grain boundary transport model for the SE to shed some light on the aforementioned limitations in garnet ASSBs. Using high-resolution volume images of the SE electrode sample, we are able to reconstruct the SE microstructure. Using a grain segmentation algorithm, we further distinguish individual grains and account for the influence of the SE grain size and grain boundaries. We focus our simulation work on the trilayer cell architecture, consisting of two porous SE electrodes separated by a dense layer. Even though the highly porous SE electrodes reduce the lithium interface resistance by providing a higher active surface area, the increased electrode tortuosity also reduces the effective ionic conductivity in the SE. We confirm via impedance simulation studies and validation against experimental results that with increasing SE electrode porosity, the lithium transport becomes limited by grain boundaries. We also correlate the area-specific resistance to different lithium infiltration stages in the trilayer cell by spatially resolving the current density distribution. This analysis allows us to suggest a plausible deposition mechanism, and moreover, we identify current density hot spots in the proximity of the dense layer. These hot spots might lead to dendrite formation and long-term cell failure. The joint theoretical and experimental study gives guidelines for cell design and optimization which allow further improvement of the trilayer architecture.
Sprache
Englisch
Identifikatoren
ISSN: 2574-0962
eISSN: 2574-0962
DOI: 10.1021/acsaem.1c00362
Titel-ID: cdi_osti_scitechconnect_1848915

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX