Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 2 von 742

Details

Autor(en) / Beteiligte
Titel
Shock vaporization of silica and the thermodynamics of planetary impact events
Ist Teil von
  • Journal of Geophysical Research, 2012-09, Vol.117 (E9), p.n/a
Ort / Verlag
Washington, DC: Blackwell Publishing Ltd
Erscheinungsjahr
2012
Quelle
Wiley-Blackwell Journals
Beschreibungen/Notizen
  • The most energetic planetary collisions attain shock pressures that result in abundant melting and vaporization. Accurate predictions of the extent of melting and vaporization require knowledge of vast regions of the phase diagrams of the constituent materials. To reach the liquid‐vapor phase boundary of silica, we conducted uniaxial shock‐and‐release experiments, where quartz was shocked to a state sufficient to initiate vaporization upon isentropic decompression (hundreds of GPa). The apparent temperature of the decompressing fluid was measured with a streaked optical pyrometer, and the bulk density was inferred by stagnation onto a standard window. To interpret the observed post‐shock temperatures, we developed a model for the apparent temperature of a material isentropically decompressing through the liquid‐vapor coexistence region. Using published thermodynamic data, we revised the liquid‐vapor boundary for silica and calculated the entropy on the quartz Hugoniot. The silica post‐shock temperature measurements, up to entropies beyond the critical point, are in excellent qualitative agreement with the predictions from the decompressing two‐phase mixture model. Shock‐and‐release experiments provide an accurate measurement of the temperature on the phase boundary for entropies below the critical point, with increasing uncertainties near and above the critical point entropy. Our new criteria for shock‐induced vaporization of quartz are much lower than previous estimates, primarily because of the revised entropy on the Hugoniot. As the thermodynamics of other silicates are expected to be similar to quartz, vaporization is a significant process during high‐velocity planetary collisions. Key Points We measured the temperature on the liquid‐vapor curve of silica We calculated the entropy on the quartz Hugoniot We provide new criteria for shock‐induced vaporization of silica
Sprache
Englisch
Identifikatoren
ISSN: 0148-0227, 2169-9097
eISSN: 2156-2202, 2169-9100
DOI: 10.1029/2012JE004082
Titel-ID: cdi_osti_scitechconnect_1829976

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX