Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 10 von 37

Details

Autor(en) / Beteiligte
Titel
Influence of non-adiabatic effects on linear absorption spectra in the condensed phase: Methylene blue
Ist Teil von
  • The Journal of chemical physics, 2021-10, Vol.155 (14), p.144112-144112
Ort / Verlag
Melville: American Institute of Physics
Erscheinungsjahr
2021
Quelle
美国小型学会期刊集(AIP Scitation平台)
Beschreibungen/Notizen
  • Modeling linear absorption spectra of solvated chromophores is highly challenging as contributions are present both from coupling of the electronic states to nuclear vibrations and from solute–solvent interactions. In systems where excited states intersect in the Condon region, significant non-adiabatic contributions to absorption line shapes can also be observed. Here, we introduce a robust approach to model linear absorption spectra accounting for both environmental and non-adiabatic effects from first principles. This model parameterizes a linear vibronic coupling (LVC) Hamiltonian directly from energy gap fluctuations calculated along molecular dynamics (MD) trajectories of the chromophore in solution, accounting for both anharmonicity in the potential and direct solute–solvent interactions. The resulting system dynamics described by the LVC Hamiltonian are solved exactly using the thermalized time-evolving density operator with orthogonal polynomials algorithm (T-TEDOPA). The approach is applied to the linear absorption spectrum of methylene blue in water. We show that the strong shoulder in the experimental spectrum is caused by vibrationally driven population transfer between the bright S1 and the dark S2 states. The treatment of the solvent environment is one of many factors that strongly influence the population transfer and line shape; accurate modeling can only be achieved through the use of explicit quantum mechanical solvation. The efficiency of T-TEDOPA, combined with LVC Hamiltonian parameterizations from MD, leads to an attractive method for describing a large variety of systems in complex environments from first principles.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX