Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 12 von 2672

Details

Autor(en) / Beteiligte
Titel
Accelerating finite-temperature Kohn-Sham density functional theory with deep neural networks
Ist Teil von
  • Physical review. B, 2021-07, Vol.104 (3), p.1, Article 035120
Ort / Verlag
College Park: American Physical Society
Erscheinungsjahr
2021
Quelle
American Physical Society
Beschreibungen/Notizen
  • We present a numerical modeling workflow based on machine learning which reproduces the total energies produced by Kohn-Sham density functional theory (DFT) at finite electronic temperature to within chemical accuracy at negligible computational cost. Based on deep neural networks, our workflow yields the local density of states (LDOS) for a given atomic configuration. From the LDOS, spatially resolved, energy-resolved, and integrated quantities can be calculated, including the DFT total free energy, which serves as the Born-Oppenheimer potential energy surface for the atoms. We demonstrate the efficacy of this approach for both solid and liquid metals and compare results between independent and unified machine-learning models for solid and liquid aluminum. Our machine-learning density functional theory framework opens up the path towards multiscale materials modeling for matter under ambient and extreme conditions at a computational scale and cost that is unattainable with current algorithms.
Sprache
Englisch
Identifikatoren
ISSN: 2469-9950
eISSN: 2469-9969
DOI: 10.1103/PhysRevB.104.035120
Titel-ID: cdi_osti_scitechconnect_1806369

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX