Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
A filtering strategy for the numerical convergence of radiation transport through purely absorbing particle clouds
Ist Teil von
Journal of quantitative spectroscopy & radiative transfer, 2020-03, Vol.247 (C)
Ort / Verlag
United States: Elsevier
Erscheinungsjahr
2020
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
Radiation transport through particle clouds plays a major role in many engineering applications. Here in this paper, we study this problem by means of solving the radiative transport equation (RTE) on a Eulerian continuous domain. The particle clouds are generated through direct numerical simulation of Navier-Stokes equations coupled with Lagrangian particle transport at different Stokes numbers. We confirm the earlier observation noted in the literature that the solution to the RTE on Eulerian mesh diverges when the Eulerian mesh size is of the order of the particle diameter. This observation is often called the homogenization error stemming from relegation of number density onto the Eulerian domain. In order to circumvent this divergence problem, we propose a filtering strategy that spreads the information of the particles to the neighboring cells in a way that the representation of the particles remains the same even when the mesh size is smaller than that of the particle size. We show through our simulations that our filtering strategy solves the issue of homogenization error for the cases where the Beer-Bouger law is valid.