Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 18 von 27

Details

Autor(en) / Beteiligte
Titel
Quantifying inactive lithium in lithium metal batteries
Ist Teil von
  • Nature (London), 2019-08, Vol.572 (7770)
Ort / Verlag
United States: Nature Publishing Group
Erscheinungsjahr
2019
Link zum Volltext
Beschreibungen/Notizen
  • Lithium metal anodes offer high theoretical capacities (3,860 milliampere-hours per gram)1, but rechargeable batteries built with such anodes suffer from dendrite growth and low Coulombic efficiency (the ratio of charge output to charge input), preventing their commercial adoption. The formation of inactive (‘dead’) lithium— which consists of both (electro)chemically formed Li+ compounds in the solid electrolyte interphase and electrically isolated unreacted metallic Li0—causes capacity loss and safety hazards. Quantitatively distinguishing between Li+ in components of the solid electrolyte interphase and unreacted metallic Li0 has not been possible, owing to the lack of effective diagnostic tools. Optical microscopy, in situ environmental transmission electron microscopy, X-ray microtomography and magnetic resonance imaging provide a morphological perspective with little chemical information. Nuclear magnetic resonance, X-ray photoelectron spectroscopy and cryogenic transmission electron microscopy can distinguish between Li+ in the solid electrolyte interphase and metallic Li0, but their detection ranges are limited to surfaces or local regions. Here we establish the analytical method of titration gas chromatography to quantify the contribution of unreacted metallic Li0 to the total amount of inactive lithium. We identify the unreacted metallic Li0, not the (electro)chemically formed Li+ in the solid electrolyte interphase, as the dominant source of inactive lithium and capacity loss. By coupling the unreacted metallic Li0 content to observations of its local microstructure and nanostructure by cryogenic electron microscopy (both scanning and transmission), we also establish the formation mechanism of inactive lithium in different types of electrolytes and determine the underlying cause of low Coulombic efficiency in plating and stripping (the charge and discharge processes, respectively, in a full cell) of lithium metal anodes. Here we propose strategies for making lithium plating and stripping more efficient so that lithium metal anodes can be used for next-generation high-energy batteries.
Sprache
Englisch
Identifikatoren
ISSN: 0028-0836
eISSN: 1476-4687
Titel-ID: cdi_osti_scitechconnect_1770708

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX