Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 19 von 614

Details

Autor(en) / Beteiligte
Titel
Electrolyte Engineering for Efficient Electrochemical Nitrate Reduction to Ammonia on a Titanium Electrode
Ist Teil von
  • ACS sustainable chemistry & engineering, 2020-02, Vol.8 (7), p.2672-2681
Ort / Verlag
United States: American Chemical Society
Erscheinungsjahr
2020
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Nitrates from agricultural runoff and industrial waste streams are a notorious waste product and hazardous pollutant. Traditional electrochemical water remediation approaches aim to solve this problem by converting nitrates to environmentally benign N2 while minimizing the production of environmentally hazardous side products such as ammonia and nitrous oxide in a process known as “denitrification”. We modify this concept and outline an opportunity to optimize the conversion of nitrates into ammonia, which is also a key commodity product used as a fertilizer, potential fuel, and chemical precursor. The electrochemical conversion of nitrates to ammonia recycles the fixed nitrogen and offers an appealing and supplementary alternative to the energy- and resource-intensive Haber-Bosch process. In this study, we investigated the effect of varying electrochemical conditions (pH, nitrate concentration, and applied potential) on the selective reduction of nitrate to ammonia at a titanium cathode. We observed that high concentrations of both protons and nitrate ions are needed to achieve high selectivity, reaching a peak of 82% Faradaic efficiency to ammonia at an applied potential of −1 V versus RHE and a partial current density to NH3 of −22 mA/cm2, using 0.4 M [NO3 –] at pH ∼0.77. The Ti electrode, as a poor hydrogen evolution catalyst with notable corrosion resistance, provides a large window of operating conditions to achieve high selectivity in the reduction of nitrate anions. Stability of the system was evaluated, and we found a high Faradaic efficiency throughout the course of an 8 h experiment. After electrochemical testing, titanium hydride was observed at the cathode surface. We also show a preliminary technoeconomic study, indicating that it may be feasible to employ an electrochemical strategy for the production of ammonium nitrate.
Sprache
Englisch
Identifikatoren
ISSN: 2168-0485
eISSN: 2168-0485
DOI: 10.1021/acssuschemeng.9b05983
Titel-ID: cdi_osti_scitechconnect_1608699

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX