Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 11 von 60

Details

Autor(en) / Beteiligte
Titel
High-yield growth kinetics and spatial mapping of single-walled carbon nanotube forests at wafer scale
Ist Teil von
  • Carbon (New York), 2020-04, Vol.159 (C), p.236-246
Ort / Verlag
New York: Elsevier Ltd
Erscheinungsjahr
2020
Quelle
Access via ScienceDirect (Elsevier)
Beschreibungen/Notizen
  • Emerging commercial applications of vertically aligned, single-walled carbon nanotube (SWCNT) “forests” require synthesis that minimizes nanotube diameter while maximizing number density across substrate areas exceeding centimeter scale. To address this need, we synthesized SWCNT forests on full silicon wafers with notable reproducibility and uniformity, and co-optimized growth for small diameters and high densities across large areas to access new territory in this 3D parameter space. We mapped the spatial uniformity of key structural features using Raman microscopy, synchrotron X-ray scattering, and Rutherford backscattering spectrometry. Low C2H2 flux over sub-nm Fe/Mo catalysts produced small-diameter SWCNTs (2.1 nm) at high number densities (2.26 × 1012 cm−2) on wafers up to 6 in. Although removing Mo resulted in larger SWCNT diameters and lower densities (<0.7 × 1012 cm−2), mass conversion rates from C2H2 to SWCNT product were high and remarkably invariant for catalyst compositions and densities (i.e., 47.7% or 1.30 × 106% g-catalyst−1 on 4-in. wafers). These carbon conversion efficiencies far exceed typical benchtop reactors and are on par with the best reported literature values. Our detailed elucidation of correlations among structural characteristics within this resource-efficient process is expected to guide future scale-up efforts of SWCNT forest growth beyond wafer scale. [Display omitted]
Sprache
Englisch
Identifikatoren
ISSN: 0008-6223
eISSN: 1873-3891
DOI: 10.1016/j.carbon.2019.12.023
Titel-ID: cdi_osti_scitechconnect_1580312

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX