Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 12 von 7048
Monthly notices of the Royal Astronomical Society, 2019-12, Vol.490 (4), p.5931-5951
2019
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Estimating covariance matrices for two- and three-point correlation function moments in Arbitrary Survey Geometries
Ist Teil von
  • Monthly notices of the Royal Astronomical Society, 2019-12, Vol.490 (4), p.5931-5951
Ort / Verlag
United Kingdom: Oxford University Press
Erscheinungsjahr
2019
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • ABSTRACT We present configuration-space estimators for the auto- and cross-covariance of two- and three-point correlation functions (2PCF and 3PCF) in general survey geometries. These are derived in the Gaussian limit (setting higher order correlation functions to zero), but for arbitrary non-linear 2PCFs (which may be estimated from the survey itself), with a shot-noise rescaling parameter included to capture non-Gaussianity. We generalize previous approaches to include Legendre moments via a geometry-correction function calibrated from measured pair and triple counts. Making use of importance sampling and random particle catalogues, we can estimate model covariances in fractions of the time required to do so with mocks, obtaining estimates with negligible sampling noise in ∼10 (∼100) CPU-hours for the 2PCF (3PCF) autocovariance. We compare results to sample covariances from a suite of BOSS DR12 mocks and find the matrices to be in good agreement, assuming a shot-noise rescaling parameter of 1.03 (1.20) for the 2PCF (3PCF). To obtain strongest constraints on cosmological parameters, we must use multiple statistics in concert; having robust methods to measure their covariances at low computational cost is thus of great relevance to upcoming surveys.
Sprache
Englisch
Identifikatoren
ISSN: 0035-8711
eISSN: 1365-2966
DOI: 10.1093/mnras/stz2896
Titel-ID: cdi_osti_scitechconnect_1574553
Format

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX