Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 22 von 95

Details

Autor(en) / Beteiligte
Titel
Surface-Enhanced Raman Scattering (SERS) Studies of Disc-on-Pillar (DOP) Arrays: Contrasting Enhancement Factor with Analytical Performance
Ist Teil von
  • Applied spectroscopy, 2019-06, Vol.73 (6), p.665-677
Ort / Verlag
London, England: SAGE Publications
Erscheinungsjahr
2019
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • The use of nanomachining methods capable of reproducible construction of nano-arrayed devices have revolutionized the field of plasmonic sensing by the introduction of a diversity of rationally engineered designs. Significant strides have been made to fabricate plasmonic platforms with tailored interparticle gaps to improve their performance for surface-enhanced Raman scattering (SERS) applications. Over time, a dichotomy has emerged in the implementation of SERS for analytical applications, the construction of substrates, optimization of interparticle spacing as a means to optimize electromagnetic field enhancement at the localized surface plasmon level, and the substrate sensitivity over extended areas to achieve quantitative performance. This work assessed the enhancement factor of plasmonic Ag/SiO2/Si disc-on-pillar (DOP) arrays of variable pitch with its analytical performance for quantitative applications. Experimental data were compared with those from finite-difference time-domain (FDTD) simulations used in the optimization of the array dimensions. A self-assembled monolayer (SAM) of benzenethiol rendered highly reproducible signals (RSD ∼4–10%) and SERS substrate enhancement factor (SSEF) values in the orders of 106–108 for all pitches. Spectra corresponding to rhodamine 6G (R6G) and 4-aminobenzoic acid demonstrated the advantages of using the more densely packed DOP arrays with a 160 nm pitch (gap = 40 nm) for quantitation in spite of the strongest SSEF was attained for a pitch of 520 nm corresponding to a 400 nm gap.
Sprache
Englisch
Identifikatoren
ISSN: 0003-7028
eISSN: 1943-3530
DOI: 10.1177/0003702819846503
Titel-ID: cdi_osti_scitechconnect_1564208

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX