Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 23 von 1849

Details

Autor(en) / Beteiligte
Titel
Automated detection and sorting of microencapsulation via machine learning
Ist Teil von
  • Lab on a chip, 2019-05, Vol.19 (10), p.1808-1817
Ort / Verlag
England: Royal Society of Chemistry (RSC)
Erscheinungsjahr
2019
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Microfluidic-based microencapsulation requires significant oversight to prevent material and quality loss due to sporadic disruptions in fluid flow that routinely arise. State-of-the-art microcapsule production is laborious and relies on experts to monitor the process, e.g. through a microscope. Unnoticed defects diminish the quality of collected material and/or may cause irreversible clogging. To address these issues, we developed an automated monitoring and sorting system that operates on consumer-grade hardware in real-time. Using human-labeled microscope images acquired during typical operation, we train a convolutional neural network that assesses microencapsulation. Based on output from the machine learning algorithm, an integrated valving system collects desirable microcapsules or diverts waste material accordingly. Although the system notifies operators to make necessary adjustments to restore microencapsulation, we can extend the system to automate corrections. Since microfluidic-based production platforms customarily collect image and sensor data, machine learning can help to scale up and improve microfluidic techniques beyond microencapsulation.
Sprache
Englisch
Identifikatoren
ISSN: 1473-0197
eISSN: 1473-0189
DOI: 10.1039/c8lc01394b
Titel-ID: cdi_osti_scitechconnect_1507164

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX