Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 22 von 76587

Details

Autor(en) / Beteiligte
Titel
Interweaving 3D Network Binder for High‐Areal‐Capacity Si Anode through Combined Hard and Soft Polymers
Ist Teil von
  • Advanced energy materials, 2019-01, Vol.9 (3), p.n/a
Ort / Verlag
Weinheim: Wiley Subscription Services, Inc
Erscheinungsjahr
2019
Quelle
Wiley-Blackwell Journals
Beschreibungen/Notizen
  • Si anodes suffer an inherent volume expansion problem. The consensus is that hydrogen bonds in these anodes are preferentially constructed between the binder and Si powder for enhanced adhesion and thus can improve cycling performance. There has been little research done in the field of understanding the contribution of the binder's mechanical properties to performance. Herein, a simple but effective strategy is proposed, combining hard/soft polymer systems, to exploit a robust binder with a 3D interpenetrating binding network (3D‐IBN) via an in situ polymerization. The 3D‐IBN structure is constructed by interweaving a hard poly(furfuryl alcohol) as the skeleton with a soft polyvinyl alcohol (PVA) as the filler, buffering the dramatic volume change of the Si anode. The resulting Si anode delivers an areal capacity of >10 mAh cm−2 and enables an energy density of >300 Wh kg−1 in a full lithium‐ion battery (LIB) cell. The component of the interweaving binder can be switched to other polymers, such as replacing PVA by thermoplastic polyurethane and styrene butadiene styrene. Such a strategy is also effective for other high‐capacity electroactive materials, e.g., Fe2O3 and Sn. This finding offers an alternative approach in designing high‐areal‐capacity electrodes through combined hard and soft polymer binders for high‐energy‐density LIBs. A universal strategy, i.e. interweaving hard and soft polymers to construct 3D network binder, is proposed to enable high areal capacities with excellent cyclability in lithium‐ion batteries. Elastic modules accommodate the volume variation of Si particles while stiff modules offer mechanically strong electrode frameworks. This strategy can provide a new principle in designing robust binder for high‐energy‐density lithium‐ion batteries.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX