Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 5 von 2238
The Journal of chemical physics, 2018-07, Vol.149 (3), p.034101-034101
2018
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
DeePCG: Constructing coarse-grained models via deep neural networks
Ist Teil von
  • The Journal of chemical physics, 2018-07, Vol.149 (3), p.034101-034101
Ort / Verlag
United States: American Institute of Physics
Erscheinungsjahr
2018
Quelle
AIP Journals Complete
Beschreibungen/Notizen
  • We introduce a general framework for constructing coarse-grained potential models without ad hoc approximations such as limiting the potential to two- and/or three-body contributions. The scheme, called the Deep Coarse-Grained Potential (abbreviated DeePCG), exploits a carefully crafted neural network to construct a many-body coarse-grained potential. The network is trained with full atomistic data in a way that preserves the natural symmetries of the system. The resulting model is very accurate and can be used to sample the configurations of the coarse-grained variables in a much faster way than with the original atomistic model. As an application, we consider liquid water and use the oxygen coordinates as the coarse-grained variables, starting from a full atomistic simulation of this system at the ab initio molecular dynamics level. We find that the two-body, three-body, and higher-order oxygen correlation functions produced by the coarse-grained and full atomistic models agree very well with each other, illustrating the effectiveness of the DeePCG model on a rather challenging task.
Sprache
Englisch
Identifikatoren
ISSN: 0021-9606
eISSN: 1089-7690
DOI: 10.1063/1.5027645
Titel-ID: cdi_osti_scitechconnect_1460500

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX