Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 21 von 1132

Details

Autor(en) / Beteiligte
Titel
Tuning the Adsorption-Induced Phase Change in the Flexible Metal–Organic Framework Co(bdp)
Ist Teil von
  • Journal of the American Chemical Society, 2016-11, Vol.138 (45), p.15019-15026
Ort / Verlag
United States: American Chemical Society
Erscheinungsjahr
2016
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Metal–organic frameworks that flex to undergo structural phase changes upon gas adsorption are promising materials for gas storage and separations, and achieving synthetic control over the pressure at which these changes occur is crucial to the design of such materials for specific applications. To this end, a new family of materials based on the flexible metal–organic framework Co­(bdp) (bdp2– = 1,4-benzenedipyrazolate) has been prepared via the introduction of fluorine, deuterium, and methyl functional groups on the bdp2– ligand, namely, Co­(F-bdp), Co­(p-F2-bdp), Co­(o-F2-bdp), Co­(D4-bdp), and Co­(p-Me2-bdp). These frameworks are isoreticular to the parent framework and exhibit similar structural flexibility, transitioning from a low-porosity, collapsed phase to high-porosity, expanded phases with increasing gas pressure. Powder X-ray diffraction studies reveal that fluorination of the aryl ring disrupts edge-to-face π–π interactions, which work to stabilize the collapsed phase at low gas pressures, while deuteration preserves these interactions and methylation strengthens them. In agreement with these observations, high-pressure CH4 adsorption isotherms show that the pressure of the CH4-induced framework expansion can be systematically controlled by ligand functionalization, as materials without edge-to-face interactions in the collapsed phase expand at lower CH4 pressures, while frameworks with strengthened edge-to-face interactions expand at higher pressures. Importantly, this work puts forth a general design strategy relevant to many other families of flexible metal–organic frameworks, which will be a powerful tool in optimizing these phase-change materials for industrial applications.
Sprache
Englisch
Identifikatoren
ISSN: 0002-7863
eISSN: 1520-5126
DOI: 10.1021/jacs.6b09155
Titel-ID: cdi_osti_scitechconnect_1330728
Format
Schlagworte
MATERIALS SCIENCE

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX