Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 7 von 52
SIAM journal on scientific computing, 2014-01, Vol.36 (3), p.C309-C334
2014
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Non-Galerkin Coarse Grids for Algebraic Multigrid
Ist Teil von
  • SIAM journal on scientific computing, 2014-01, Vol.36 (3), p.C309-C334
Ort / Verlag
Philadelphia: Society for Industrial and Applied Mathematics
Erscheinungsjahr
2014
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Algebraic multigrid (AMG) is a popular and effective solver for systems of linear equations that arise from discretized partial differential equations. While AMG has been effectively implemented on large scale parallel machines, challenges remain, especially when moving to exascale. In particular, stencil sizes (the number of nonzeros in a row) tend to increase further down in the coarse grid hierarchy, and this growth leads to more communication. Thus, as problem size increases and the number of levels in the hierarchy grows, the overall efficiency of the parallel AMG method decreases, sometimes dramatically. This growth in stencil size is due to the standard Galerkin coarse grid operator, $P theta A P$, where $P$ is the prolongation (i.e., interpolation) operator. For example, the coarse grid stencil size for a simple three-dimensional (3D) seven-point finite differencing approximation to diffusion can increase into the thousands on present day machines, causing an associated increase in communication costs. We therefore consider algebraically truncating coarse grid stencils to obtain a non-Galerkin coarse grid. First, the sparsity pattern of the non-Galerkin coarse grid is determined by employing a heuristic minimal "safe" pattern together with strength-of-connection ideas. Second, the nonzero entries are determined by collapsing the stencils in the Galerkin operator using traditional AMG techniques. The result is a reduction in coarse grid stencil size, overall operator complexity, and parallel AMG solve phase times.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX