Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 25 von 161

Details

Autor(en) / Beteiligte
Titel
Low-temperature combustion chemistry of biofuels: pathways in the initial low-temperature (550 K―750 K) oxidation chemistry of isopentanol
Ist Teil von
  • Physical chemistry chemical physics : PCCP, 2012-01, Vol.14 (9), p.3112-3127
Ort / Verlag
Cambridge: Royal Society of Chemistry
Erscheinungsjahr
2012
Link zum Volltext
Quelle
MEDLINE
Beschreibungen/Notizen
  • The branched C(5) alcohol isopentanol (3-methylbutan-1-ol) has shown promise as a potential biofuel both because of new advanced biochemical routes for its production and because of its combustion characteristics, in particular as a fuel for homogeneous-charge compression ignition (HCCI) or related strategies. In the present work, the fundamental autoignition chemistry of isopentanol is investigated by using the technique of pulsed-photolytic Cl-initiated oxidation and by analyzing the reacting mixture by time-resolved tunable synchrotron photoionization mass spectrometry in low-pressure (8 Torr) experiments in the 550-750 K temperature range. The mass-spectrometric experiments reveal a rich chemistry for the initial steps of isopentanol oxidation and give new insight into the low-temperature oxidation mechanism of medium-chain alcohols. Formation of isopentanal (3-methylbutanal) and unsaturated alcohols (including enols) associated with HO(2) production was observed. Cyclic ether channels are not observed, although such channels dominate OH formation in alkane oxidation. Rather, products are observed that correspond to formation of OH viaβ-C-C bond fission pathways of QOOH species derived from β- and γ-hydroxyisopentylperoxy (RO(2)) radicals. In these pathways, internal hydrogen abstraction in the RO(2)⇄ QOOH isomerization reaction takes place from either the -OH group or the C-H bond in α-position to the -OH group. These pathways should be broadly characteristic for longer-chain alcohol oxidation. Isomer-resolved branching ratios are deduced, showing evolution of the main products from 550 to 750 K, which can be qualitatively explained by the dominance of RO(2) chemistry at lower temperature and hydroxyisopentyl decomposition at higher temperature.
Sprache
Englisch
Identifikatoren
ISSN: 1463-9076
eISSN: 1463-9084
DOI: 10.1039/c2cp23248k
Titel-ID: cdi_osti_scitechconnect_1153325

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX