Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...

Details

Autor(en) / Beteiligte
Titel
Assessing net ecosystem carbon exchange of U.S. terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations
Ist Teil von
  • Agricultural and forest meteorology, 2011-01, Vol.151 (1), p.60-69
Ort / Verlag
Amsterdam: Elsevier B.V
Erscheinungsjahr
2011
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • ▶ We report a terrestrial carbon sink in the conterminous U.S. at 0.63 pg C yr −1. ▶ U.S. carbon sink varied between 0.51 and 0.70 pg C yr −1 over the period 2001–2006. ▶ The severe droughts in 2002 and 2006 substantially reduced the U.S. carbon sink. ▶ Disturbances reduced carbon uptake or resulted in carbon release at regional scales. ▶ Our results provide an alternative and novel constraint to the U.S. carbon sink. More accurate projections of future carbon dioxide concentrations in the atmosphere and associated climate change depend on improved scientific understanding of the terrestrial carbon cycle. Despite the consensus that U.S. terrestrial ecosystems provide a carbon sink, the size, distribution, and interannual variability of this sink remain uncertain. Here we report a terrestrial carbon sink in the conterminous U.S. at 0.63 pg C yr −1 with the majority of the sink in regions dominated by evergreen and deciduous forests and savannas. This estimate is based on our continuous estimates of net ecosystem carbon exchange (NEE) with high spatial (1 km) and temporal (8-day) resolutions derived from NEE measurements from eddy covariance flux towers and wall-to-wall satellite observations from Moderate Resolution Imaging Spectroradiometer (MODIS). We find that the U.S. terrestrial ecosystems could offset a maximum of 40% of the fossil-fuel carbon emissions. Our results show that the U.S. terrestrial carbon sink varied between 0.51 and 0.70 pg C yr −1 over the period 2001–2006. The dominant sources of interannual variation of the carbon sink included extreme climate events and disturbances. Droughts in 2002 and 2006 reduced the U.S. carbon sink by ∼20% relative to a normal year. Disturbances including wildfires and hurricanes reduced carbon uptake or resulted in carbon release at regional scales. Our results provide an alternative, independent, and novel constraint to the U.S. terrestrial carbon sink.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX