Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 1 von 11705

Details

Autor(en) / Beteiligte
Titel
LncRNA DANCR and miR-320a suppressed osteogenic differentiation in osteoporosis by directly inhibiting the Wnt/β-catenin signaling pathway
Ist Teil von
  • Experimental and Molecular Medicine, 2020, 52(0), , pp.1-16
Ort / Verlag
London: Nature Publishing Group UK
Erscheinungsjahr
2020
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • Our study aimed to determine how lncRNA DANCR, miR-320a, and CTNNB1 interact with each other and regulate osteogenic differentiation in osteoporosis. qRT-PCR and western blotting were performed to determine the expression of DANCR, miR-320a, CTNNB1, and the osteoporosis- or Wnt/β-catenin pathway-related markers T-cell factor 1 (TCF-1), runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), osteocalcin (OCN), and osteopontin (OPN). Interactions between CTNNB1, DANCR, and miR-320a were predicted by bioinformatics approaches and validated using a luciferase assay. Osteoblastic phenotypes were evaluated by ALP staining, ALP activity assay and Alizarin Red staining. The bilateral ovariectomy method was used to establish an in vivo osteoporosis model. Bone morphological changes were examined using hematoxylin and eosin (H&E) and Alcian Blue staining. The expression levels of DANCR and miR-320a in BMSCs derived from osteoporosis patients were upregulated, whereas CTNNB1 expression was downregulated compared with that in healthy controls. Importantly, we demonstrated that miR-320a and DANCR acted independently from each other and both inhibited CTNNB1 expression, whereas the inhibitory effect was additive when miR-320a and DANCR were cooverexpressed. Moreover, we found that DANCR overexpression largely abrogated the effect of the miR-320a inhibitor on CTNNB1 expression and the Wnt/β-catenin signaling pathway in BMSCs during osteogenic differentiation. We further confirmed the results above in BMSCs derived from an osteoporosis animal model. Taken together, our findings revealed that DANCR and miR-320a regulated the Wnt/β-catenin signaling pathway during osteogenic differentiation in osteoporosis through CTNNB1 inhibition. Our results highlight the potential value of DANCR and miR-320a as promising therapeutic targets for osteoporosis treatment. Osteoporosis: Tiny targets to keep bones strong Two non-coding RNAs are potential targets for reducing bone loss in post-menopausal osteoporosis. Bones are constantly being remodeled; when resorption outpaces generation of new bone, bones are weakened, causing osteoporosis and leading to decreased quality of life and injuries. Although treatments exist, they often have undesirable side effects, and new treatments are needed. The molecular basis of the changes that accompany osteoporosis are poorly understood. Da Zhong at the Xiangya Hospital of Central South University in Changsha, China, and co-workers investigated how two non-coding RNAs, small molecules that regulate gene expression, are involved in the progression of post-menopausal osteoporosis. They found that levels of both molecules are increased in osteoporosis, and that silencing them increases building of new bone, key to maintaining bone strength. These results illuminate a potential new direction in treatments for osteoporosis.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX