Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 21 von 3043

Details

Autor(en) / Beteiligte
Titel
ST6GALNAC1 promotes the invasion and migration of breast cancer cells via the EMT pathway
Ist Teil von
  • Genes & Genomics, 2023, 45(11), , pp.1367-1376
Ort / Verlag
Singapore: Springer Nature Singapore
Erscheinungsjahr
2023
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Background A specific sialyl-transferases called ST6GALNAC1 has been proven to up-regulate abnormal O‐glycosylation, which is strongly associated with tumorigenesis and cancer progression. However, the precise pathological outcome of ST6GALNAC1 expression in breast cancer cells remains unknown. Therefore, our study aims to investigate the functional role of ST6GALNAC1 and its impact on the epithelial-mesenchymal transition (EMT) pathway in breast cancer cells. Methods Plasmids with siRNA were used to construct ST6GALNAC1 knockoff (si-ST6GALNAC1) MDA-MB-231 and MDA-MB-453 cells, while lentiviruses were used to construct ST6GALNAC1 over-expression (oe-ST6GALNAC1) MCF-7 and BT474 cells. Transfer efficiency was verified by Western Blot. Then we selected transfected cells and assessed the changes in cell proliferation, invasion, migration, and EMT markers. Results The expression of ST6GALNAC1 significantly enhanced cell migration and invasion, which was confirmed by Wound Scratch Assay and Transwell Assay. Particularly, ST6GALNAC1 expression directly induced the EMT signaling pathway. E-cadherin was markedly decreased in oe-ST6GALNAC1 cells, accompanied by an up-regulation of mesenchymal markers including N-cadherin, snail, and ZEB1. However, no significant correlation was found between ST6GALNAC1 expression and cell proliferation. All of the outcomes were reversely validated in si-ST6GALNAC1 cells. Conclusions The expression of ST6GALNAC1 promotes cell migration and invasion probably by triggering the molecular process of the EMT pathway in breast cancer cells, which may provide new clues for designing novel molecular targeted drugs in breast cancer treatment.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX