Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 14 von 24

Details

Autor(en) / Beteiligte
Titel
TOI-3757 b: A Low-density Gas Giant Orbiting a Solar-metallicity M Dwarf
Ist Teil von
  • The Astronomical journal, 2022-09, Vol.164 (3), p.81
Ort / Verlag
Goddard Space Flight Center: The American Astronomical Society
Erscheinungsjahr
2022
Link zum Volltext
Quelle
EZB Free E-Journals
Beschreibungen/Notizen
  • We present the discovery of a new Jovian-sized planet, TOI-3757 b, the lowest-density transiting planet known to orbit an M dwarf (M0V). This planet was discovered around a solar-metallicity M dwarf, using Transiting Exoplanet Survey Satellite photometry and confirmed with precise radial velocities from the Habitable-zone Planet Finder (HPF) and NEID. With a planetary radius of 12.0 (+0.4 -0.5) R⊕ and mass of 85.3 (+8.8 -8.7)M⊕, not only does this object add to the small sample of gas giants (∼10) around M dwarfs, but also its low density (ρ=0.27 +0.05 -0.04 g) provides an opportunity to test theories of planet formation. We present two hypotheses to explain its low density; first, we posit that the low metallicity of its stellar host (∼0.3 dex lower than the median metallicity of M dwarfs hosting gas giants) could have played a role in the delayed formation of a solid core massive enough to initiate runaway accretion. Second, using the eccentricity estimate of 0.14 ± 0.06, we determine it is also plausible for tidal heating to at least partially be responsible for inflating the radius of TOI-3757b b. The low density and large scale height of TOI-3757 b makes it an excellent target for transmission spectroscopy studies of atmospheric escape and composition (transmission spectroscopy measurement of ∼ 190). We use HPF to perform transmission spectroscopy of TOI-3757 b using the helium 10830 Å line. Doing this, we place an upper limit of 6.9% (with 90% confidence) on the maximum depth of the absorption from the metastable transition of He at ∼10830 Å, which can help constraint the atmospheric mass-loss rate in this energy-limited regime.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX