Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 22 von 66

Details

Autor(en) / Beteiligte
Titel
Differential Expression of Melatonin Receptor Subtypes MelIa, MelIb and MelIc in Relation to Melatonin Binding in the Male Songbird Brain
Ist Teil von
  • Brain, behavior and evolution, 2015-01, Vol.85 (1), p.4-14
Ort / Verlag
Basel, Switzerland: S. Karger AG
Erscheinungsjahr
2015
Link zum Volltext
Quelle
MEDLINE
Beschreibungen/Notizen
  • Previous autoradiography studies illustrated that several areas of the avian brain can bind the pineal hormone melatonin. In birds, there are three melatonin receptor (MelR) subtypes: MelIa, MelIb and MelIc. To date, their brain distribution has not been studied in any passerine bird. Therefore, we investigated mRNA distribution of MelR subtypes in adjacent sections of the brain of two songbirds, the blackcap and the zebra finch, in parallel with that of 2-[125I]-iodomelatonin (IMEL) binding sites in the same brains. The general pattern of receptor expression shown by in situ hybridization of species-specific probes matched well with that of IMEL binding. However, the expression of the three subtypes was area specific with similar patterns in the two species. Some brain areas expressed only one receptor subtype, most brain regions co-expressed either MelIa with MelIb or MelIa with MelIc, whereas few areas expressed MelIb and MelIc or all three receptor subtypes. Since many sensory areas, most thalamic areas and subareas of the neopallium, a cortex analogue, express MelR, it is likely that most sensory motor integration functions are melatonin sensitive. Further, the area-specific expression patterns suggest that the regulatory role of melatonin differs among different brain areas. Since subareas of well-defined neural circuits, such as the visual system or the song control system, are equipped with different receptor types, we hypothesize a diversity of functions for melatonin in the control of sensory integration and behavior.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX