Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 28 von 146

Details

Autor(en) / Beteiligte
Titel
Overexpression of the maize Corngrass1 microRNA prevents flowering, improves digestibility, and increases starch content of switchgrass
Ist Teil von
  • Proceedings of the National Academy of Sciences - PNAS, 2011-10, Vol.108 (42), p.17550-17555
Ort / Verlag
United States: National Academy of Sciences
Erscheinungsjahr
2011
Quelle
MEDLINE
Beschreibungen/Notizen
  • Biofuels developed from biomass crops have the potential to supply a significant portion of our transportation fuel needs. To achieve this potential, however, it will be necessary to develop improved plant germplasm specifically tailored to serve as energy crops. Liquid transportation fuel can be created from the sugars locked inside plant cell walls. Unfortunately, these sugars are inherently resistant to hydrolytic release because they are contained in polysaccharides embedded in lignin. Overcoming this obstacle is a major objective toward developing sustainable bioenergy crop plants. The maize Corngrass1 (Cg1) gene encodes a microRNA that promotes juvenile cell wall identities and morphology. To test the hypothesis that juvenile biomass has superior qualities as a potential biofuel feedstock, the Cg1 gene was transferred into several other plants, including the bioenergy crop Panicum virgatum (switchgrass). Such plants were found to have up to 250% more starch, resulting in higher glucose release from saccharification assays with or without biomass pretreatment. In addition, a complete inhibition of flowering was observed in both greenhouse and field grown plants. These results point to the potential utility of this approach, both for the domestication of new biofuel crops, and for the limitation of transgene flow into native plant species.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX