Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 15 von 240
Proceedings of the National Academy of Sciences - PNAS, 2014-04, Vol.111 (15), p.5532-5537
2014
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Understanding the mechanism of proteasome 20S core particle gating
Ist Teil von
  • Proceedings of the National Academy of Sciences - PNAS, 2014-04, Vol.111 (15), p.5532-5537
Ort / Verlag
United States: National Academy of Sciences
Erscheinungsjahr
2014
Quelle
MEDLINE
Beschreibungen/Notizen
  • The 20S core particle proteasome is a molecular machine playing an important role in cellular function by degrading protein substrates that no longer are required or that have become damaged. Regulation of proteasome activity occurs, in part, through a gating mechanism controlling the sizes of pores at the top and bottom ends of the symmetric proteasome barrel and restricting access to catalytic sites sequestered in the lumen of the structure. Although atomic resolution models of both open and closed states of the proteasome have been elucidated, the mechanism by which gates exchange between these states remains to be understood. Here, this is investigated by using magnetization transfer NMR spectroscopy focusing on the 20S proteasome core particle from Thermoplasma acidophilum . We show from viscosity-dependent proteasome gating kinetics that frictional forces originating from random solvent motions are critical for driving the gating process. Notably, a small effective hydrodynamic radius (EHR; <4Å) is obtained, providing a picture in which gate exchange proceeds through many steps involving only very small segment sizes. A small EHR further suggests that the kinetics of gate interconversion will not be affected appreciably by large viscogens, such as macromolecules found in the cell, so long as they are inert. Indeed, measurements in cell lysate reveal that the gate interconversion rate decreases only slightly, demonstrating that controlled studies in vitro provide an excellent starting point for understanding regulation of 20S core particle function in complex, biologically relevant environments.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX