Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 19 von 59
Research notes of the AAS, 2021-12, Vol.5 (12), p.276
2021
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Updates to LUCI: A New Fitting Paradigm Using Mixture Density Networks
Ist Teil von
  • Research notes of the AAS, 2021-12, Vol.5 (12), p.276
Erscheinungsjahr
2021
Beschreibungen/Notizen
  • Abstract LUCI is an general-purpose spectral line-fitting pipeline which natively integrates machine learning algorithms to initialize fit functions. LUCI currently uses point-estimates obtained from a convolutional neural network (CNN) to inform optimization algorithms; this methodology has shown great promise by reducing computation time and reducing the chance of falling into a local minimum using convex optimization methods. In this update to LUCI, we expand upon the CNN developed in Rhea et al. so that it outputs Gaussian posterior distributions of the fit parameters of interest (the velocity and broadening) rather than simple point-estimates. Moreover, these posteriors are then used to inform the priors in a Bayesian inference scheme, either emcee or dynesty . The code is publicly available at crhea93:LUCI ( https://github.com/crhea93/LUCI ).
Sprache
Englisch
Identifikatoren
ISSN: 2515-5172
eISSN: 2515-5172
DOI: 10.3847/2515-5172/ac3dfe
Titel-ID: cdi_crossref_primary_10_3847_2515_5172_ac3dfe
Format

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX