Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 2 von 527
The Astrophysical journal, 2018-05, Vol.859 (1), p.13
2018

Details

Autor(en) / Beteiligte
Titel
A Particle Module for the PLUTO Code. I. An Implementation of the MHD-PIC Equations
Ist Teil von
  • The Astrophysical journal, 2018-05, Vol.859 (1), p.13
Ort / Verlag
Philadelphia: The American Astronomical Society
Erscheinungsjahr
2018
Link zum Volltext
Quelle
EZB Free E-Journals
Beschreibungen/Notizen
  • We describe an implementation of a particle physics module available for the PLUTO code appropriate for the dynamical evolution of a plasma consisting of a thermal fluid and a nonthermal component represented by relativistic charged particles or cosmic rays (CRs). While the fluid is approached using standard numerical schemes for magnetohydrodynamics, CR particles are treated kinetically using conventional Particle-In-Cell (PIC) techniques. The module can be used either to describe test-particle motion in the fluid electromagnetic field or to solve the fully coupled magnetohydrodynamics (MHD)-PIC system of equations with particle backreaction on the fluid as originally introduced by Bai et al. Particle backreaction on the fluid is included in the form of momentum-energy feedback and by introducing the CR-induced Hall term in Ohm's law. The hybrid MHD-PIC module can be employed to study CR kinetic effects on scales larger than the (ion) skin depth provided that the Larmor gyration scale is properly resolved. When applicable, this formulation avoids resolving microscopic scales, offering substantial computational savings with respect to PIC simulations. We present a fully conservative formulation that is second-order accurate in time and space, and extends to either the Runge-Kutta (RK) or the corner transport upwind time-stepping schemes (for the fluid), while a standard Boris integrator is employed for the particles. For highly energetic relativistic CRs and in order to overcome the time-step restriction, a novel subcycling strategy that retains second-order accuracy in time is presented. Numerical benchmarks and applications including Bell instability, diffusive shock acceleration, and test-particle acceleration in reconnecting layers are discussed.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX