Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...

Details

Autor(en) / Beteiligte
Titel
The Global and Radial Stellar Mass Assembly of Milky Way-sized Galaxies
Ist Teil von
  • The Astrophysical journal, 2018-02, Vol.854 (2), p.152
Ort / Verlag
Philadelphia: The American Astronomical Society
Erscheinungsjahr
2018
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • We study the global and radial stellar mass assembly of eight zoomed-in Milky Way (MW)-sized galaxies produced in hydrodynamics cosmological simulations. The disk-dominated galaxies (four) show a fast initial stellar mass growth in the innermost parts, driven mostly by in situ star formation (SF), but since z ∼ 2−1, the SF has entered a long-term quenching phase. The outer regions follow this trend but more gently, as they are more external. As a result, the radial stellar mass growth is highly inside-out due to both inside-out structural growth and inside-out SF quenching. The half-mass radius evolves fast; for instance, (z = 1) < 0.5 (z = 0). Two other runs resemble lenticular galaxies. One also shows a pronounced inside-out growth, and the other one presents a nearly uniform radial mass assembly. The other two galaxies suffered late major mergers. Their normalized radial mass growth histories (MGHs) are very close, but with periods of outside-in assembly during or after the mergers. For all of the simulations, the archaeological radial MGHs calculated from the z = 0 stellar particle age distribution are similar to current MGHs, which shows that the mass assembly by ex situ stars and the radial mass transport do not significantly change their radial mass distributions. Our results agree qualitatively with observational inferences from the fossil record method applied to a survey of local galaxies and from look-back observations of progenitors of MW-sized galaxies. However, the inside-out growth mode is more pronounced, and the growth is faster in simulations than in observational inferences.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX