Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 22 von 2468

Details

Autor(en) / Beteiligte
Titel
Simulation and experimental verification of prompt gamma-ray emissions during proton irradiation
Ist Teil von
  • Physics in medicine & biology, 2015-05, Vol.60 (10), p.4197-4207
Ort / Verlag
England: IOP Publishing
Erscheinungsjahr
2015
Link zum Volltext
Quelle
MEDLINE
Beschreibungen/Notizen
  • Irradiation with protons and light ions offers new possibilities for tumor therapy but has a strong need for novel imaging modalities for treatment verification. The development of new detector systems, which can provide an in vivo range assessment or dosimetry, requires an accurate knowledge of the secondary radiation field and reliable Monte Carlo simulations. This paper presents multiple measurements to characterize the prompt γ-ray emissions during proton irradiation and benchmarks the latest Geant4 code against the experimental findings. Within the scope of this work, the total photon yield for different target materials, the energy spectra as well as the γ-ray depth profile were assessed. Experiments were performed at the superconducting AGOR cyclotron at KVI-CART, University of Groningen. Properties of the γ-ray emissions were experimentally determined. The prompt γ-ray emissions were measured utilizing a conventional HPGe detector system (Clover) and quantitatively compared to simulations. With the selected physics list QGSP_BIC_HP, Geant4 strongly overestimates the photon yield in most cases, sometimes up to 50%. The shape of the spectrum and qualitative occurrence of discrete γ lines is reproduced accurately. A sliced phantom was designed to determine the depth profile of the photons. The position of the distal fall-off in the simulations agrees with the measurements, albeit the peak height is also overestimated. Hence, Geant4 simulations of prompt γ-ray emissions from irradiation with protons are currently far less reliable as compared to simulations of the electromagnetic processes. Deviations from experimental findings were observed and quantified. Although there has been a constant improvement of Geant4 in the hadronic sector, there is still a gap to close.
Sprache
Englisch
Identifikatoren
ISSN: 0031-9155
eISSN: 1361-6560
DOI: 10.1088/0031-9155/60/10/4197
Titel-ID: cdi_iop_journals_10_1088_0031_9155_60_10_4197

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX