Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Capability-Aware Task Allocation and Team Formation Analysis for Cooperative Exploration of Complex Environments
Ist Teil von
2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022, p.7145-7152
Ort / Verlag
IEEE
Erscheinungsjahr
2022
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
To achieve autonomy in complex real-world exploration missions, we consider deployment strategies for a team of robots with heterogeneous capabilities. We formulate a multi-robot exploration mission and compute an operation policy to maintain robot team productivity and maximize mission success. The environment description, robot capability, and mission outcome are modeled as a Markov decision process (MDP). We also include constraints, such as sensor failures, limited communication coverage, and mobility-stressing elements. The proposed operation model is applied to the DARPA Subterranean (SubT) Challenge. The deployment policy is also compared against the human-based operation strategy in the final competition of the SubT Challenge.