Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 14 von 44
2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022, p.10452-10462
2022
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Learning Hierarchical Cross-Modal Association for Co-Speech Gesture Generation
Ist Teil von
  • 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022, p.10452-10462
Ort / Verlag
IEEE
Erscheinungsjahr
2022
Quelle
IEEE Xplore Digital Library
Beschreibungen/Notizen
  • Generating speech-consistent body and gesture movements is a long-standing problem in virtual avatar creation. Previous studies often synthesize pose movement in a holistic manner, where poses of all joints are generated simultaneously. Such a straightforward pipeline fails to generate fine-grained co-speech gestures. One observation is that the hierarchical semantics in speech and the hierarchical structures of human gestures can be naturally described into multiple granularities and associated together. To fully utilize the rich connections between speech audio and human gestures, we propose a novel framework named Hierarchical Audio-to-Gesture (HA2G) for co-speech gesture generation. In HA2G, a Hierarchical Audio Learner extracts audio representations across semantic granularities. A Hierarchical Pose Inferer subsequently renders the entire human pose gradually in a hierarchical manner. To enhance the quality of synthesized gestures, we develop a contrastive learning strategy based on audio-text alignment for better audio representations. Extensive experiments and human evaluation demonstrate that the proposed method renders realistic co-speech gestures and out-performs previous methods in a clear margin. Project page: https://alvinliu0.github.io/projects/HA2G.
Sprache
Englisch
Identifikatoren
eISSN: 2575-7075
DOI: 10.1109/CVPR52688.2022.01021
Titel-ID: cdi_ieee_primary_9879694

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX