Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
RFNet: Unsupervised Network for Mutually Reinforcing Multi-modal Image Registration and Fusion
Ist Teil von
2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022, p.19647-19656
Ort / Verlag
IEEE
Erscheinungsjahr
2022
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
In this paper, we propose a novel method to realize multimodal image registration and fusion in a mutually reinforcing framework, termed as RFNet. We handle the registration in a coarse-to-fine fashion. For the first time, we exploit the feedback of image fusion to promote the registration accuracy rather than treating them as two separate issues. The fine-registered results also improve the fusion performance. Specifically, for image registration, we solve the bottlenecks of defining registration metrics applicable for multi-modal images and facilitating the network convergence. The metrics are defined based on image translation and image fusion respectively in the coarse and fine stages. The convergence is facilitated by the designed metrics and a deformable convolution-based network. For image fusion, we focus on texture preservation, which not only increases the information amount and quality of fusion results but also improves the feedback of fusion results. The proposed method is evaluated on multi-modal images with large global parallaxes, images with local misalignments and aligned images to validate the performances of registration and fusion. The results in these cases demonstrate the effectiveness of our method.