Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 11 von 70998
2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022, p.17541-17550
2022
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Towards An End-to-End Framework for Flow-Guided Video Inpainting
Ist Teil von
  • 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022, p.17541-17550
Ort / Verlag
IEEE
Erscheinungsjahr
2022
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • Optical flow, which captures motion information across frames, is exploited in recent video inpainting methods through propagating pixels along its trajectories. However, the hand-crafted flow-based processes in these methods are applied separately to form the whole inpainting pipeline. Thus, these methods are less efficient and rely heavily on the intermediate results from earlier stages. In this paper, we propose an End-to-End framework for Flow-Guided Video Inpainting (E 2 FGVI) through elaborately designed three trainable modules, namely, flow completion, feature propagation, and content hallucination modules. The three modules correspond with the three stages of previous flow-based methods but can be Jointly optimized, leading to a more efficient and effective inpainting process. Experimental results demonstrate that the proposed method outperforms state-of-the-art methods both qualitatively and quantitatively and shows promising efficiency. The code is available at https://github.com/MCG-NKU/E2FGVI.
Sprache
Englisch
Identifikatoren
eISSN: 2575-7075
DOI: 10.1109/CVPR52688.2022.01704
Titel-ID: cdi_ieee_primary_9878410

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX