Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 10 von 733
2022 IEEE 47th Conference on Local Computer Networks (LCN), 2022, p.343-346
2022
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
A Low-Latency Fog-based Framework to secure IoT Applications using Collaborative Federated Learning
Ist Teil von
  • 2022 IEEE 47th Conference on Local Computer Networks (LCN), 2022, p.343-346
Ort / Verlag
IEEE
Erscheinungsjahr
2022
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • Attacks against the IoT network are increasing rapidly, leading to an exponential growth in the number of unsecured IoT devices. Existing security mechanisms are facing several issues due to the lack of real-time decisions, high energy consumption, and high time delays. In this context, we propose a novel Low-Latency Fog-based Framework, called FogFed, to secure IoT applications using Fog computing and Federated Learning (FL). The fog brings security mechanisms near IoT devices reducing delays in communication, while FL enables a privacy-aware collaborative learning between IoT while preserving their privacy. FogFed combines two levels of detection, Fog-based IoT attack detection using a binary FL classifier and cloud-based IoT attack detection using a Multiclass FL classifier. The in-depth experiments results with well-known IoT attack/malware using, the UNSW-NB15 datastet, show the significant accuracy (99%) and detection rate (99%), which outperforms centralized ML/DL models, while significantly reducing delays and preserving the privacy.
Sprache
Englisch
Identifikatoren
DOI: 10.1109/LCN53696.2022.9843315
Titel-ID: cdi_ieee_primary_9843315

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX