Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 11 von 96
IEEE transactions on intelligent transportation systems, 2022-10, Vol.23 (10), p.17342-17353
2022
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Real-Time Self-Supervised Monocular Depth Estimation Without GPU
Ist Teil von
  • IEEE transactions on intelligent transportation systems, 2022-10, Vol.23 (10), p.17342-17353
Ort / Verlag
New York: IEEE
Erscheinungsjahr
2022
Quelle
IEEE/IET Electronic Library
Beschreibungen/Notizen
  • Single-image depth estimation represents a longstanding challenge in computer vision and although it is an ill-posed problem, deep learning enabled astonishing results leveraging both supervised and self-supervised training paradigms. State-of-the-art solutions achieve remarkably accurate depth estimation from a single image deploying huge deep architectures, requiring powerful dedicated hardware to run in a reasonable amount of time. This overly demanding complexity makes them unsuited for a broad category of applications requiring devices with constrained resources or memory consumption. To tackle this issue, in this paper a family of compact, yet effective CNNs for monocular depth estimation is proposed, by leveraging self-supervision from a binocular stereo rig. Our lightweight architectures, namely PyD-Net and PyD-Net2, compared to complex state-of-the-art trade a small drop in accuracy to drastically reduce the runtime and memory requirements by a factor ranging from <inline-formula> <tex-math notation="LaTeX">2\times </tex-math></inline-formula> to <inline-formula> <tex-math notation="LaTeX">100\times </tex-math></inline-formula>. Moreover, our networks can run real-time monocular depth estimation on a broad set of embedded or consumer devices, even not equipped with a GPU, by early stopping the inference with negligible (or no) loss in accuracy, making it ideally suited for real applications with strict constraints on hardware resources or power consumption.
Sprache
Englisch
Identifikatoren
ISSN: 1524-9050
eISSN: 1558-0016
DOI: 10.1109/TITS.2022.3157265
Titel-ID: cdi_ieee_primary_9733979

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX