Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
2021 China Automation Congress (CAC), 2021, p.5875-5880
2021
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Automatic Segmentation of Dynamic Thyroid Ultrasound Images Based on An Improved DRLSE Model
Ist Teil von
  • 2021 China Automation Congress (CAC), 2021, p.5875-5880
Ort / Verlag
IEEE
Erscheinungsjahr
2021
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • Aiming at the characteristics of dynamic thyroid ultrasound images with high noise, low contrast, uneven gray distribution, and little change in continuous frame images, this paper improves the Distance Regularized Level Set Evolution (DRLSE) model and applies it to dynamics Segmentation of thyroid ultrasound images, It is of great significance for the correct diagnosis of thyroid disease. The algorithm uses bilateral filtering instead of Gaussian filtering to smooth the image, which protects the edge information of the image while smoothing the noise. Improve the edge indicator function of DRLSE and use the step-by-step method for image segmentation, which improves the speed and accuracy of segmentation. In order to achieve automatic segmentation of dynamic ultrasound images, the centroid of the thyroid segmentation result of each image is used as the initial contour point of the next adjacent frame of image for segmentation. Experiments show that the algorithm solves the problems of poor anti-noise ability of the DRLSE model, long evolution time, and manual modification of the initial contour. It not only improves the speed of segmentation of the thyroid area but also improves the segmentation Precision.
Sprache
Englisch
Identifikatoren
eISSN: 2688-0938
DOI: 10.1109/CAC53003.2021.9728139
Titel-ID: cdi_ieee_primary_9728139

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX