Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 17 von 49587

Details

Autor(en) / Beteiligte
Titel
Input Data Modeling: An Approach Using Generative Adversarial Networks
Ist Teil von
  • 2021 Winter Simulation Conference (WSC), 2021, p.1-12
Ort / Verlag
IEEE
Erscheinungsjahr
2021
Quelle
IEEE/IET Electronic Library
Beschreibungen/Notizen
  • Input data modeling varies according to the modeler's objectives and may be a simple or complex task. Despite great advances in data collection techniques, the input data analysis remains a challenge, especially when the input data is complex and cannot be modeled by standard solutions offered by commercial simulation software. Therefore, this paper focuses on how Generative Adversarial Networks (GANs) may support input data modeling, especially when traditional approaches are insufficient or inefficient. We evaluate the adoption of GANs for modeling correlated data as well as independent and identically distributed data. As results, GAN input models were able to generate highly accurate synthetic samples (average accuracies> 97.0%). For univariate distributions, we found no significant difference between standard and GAN input models performances. On the other hand, for correlated data, GAN input models outperformed standard ones. The most relevant accuracy gain was observed for the bivariate normal.
Sprache
Englisch
Identifikatoren
eISSN: 1558-4305
DOI: 10.1109/WSC52266.2021.9715407
Titel-ID: cdi_ieee_primary_9715407

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX