Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 12 von 24
2021 IEEE/CVF International Conference on Computer Vision (ICCV), 2021, p.15550-15559
2021
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Crowd Counting With Partial Annotations in an Image
Ist Teil von
  • 2021 IEEE/CVF International Conference on Computer Vision (ICCV), 2021, p.15550-15559
Ort / Verlag
IEEE
Erscheinungsjahr
2021
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • To fully leverage the data captured from different scenes with different view angles while reducing the annotation cost, this paper studies a novel crowd counting setting, i.e. only using partial annotations in each image as training data. Inspired by the repetitive patterns in the annotated and unannotated regions as well as the ones between them, we design a network with three components to tackle those unannotated regions: i) in an Unannotated Regions Characterization (URC) module, we employ a memory bank to only store the annotated features, which could help the visual features extracted from these annotated regions flow to these unannotated regions; ii) For each image, Feature Distribution Consistency (FDC) regularizes the feature distributions of annotated head and unannotated head regions to be consistent; iii) a Cross-regressor Consistency Regularization (CCR) module is designed to learn the visual features of unannotated regions in a self-supervised style. The experimental results validate the effectiveness of our proposed model under the partial annotation setting for several datasets, such as ShanghaiTech, UCF-CC-50, UCF-QNRF, NWPU-Crowd and JHU-CROWD++. With only 10% annotated regions in each image, our proposed model achieves better performance than the recent methods and baselines under semi-supervised or active learning settings on all datasets. The code is https://github.com/svip-lab/CrwodCountingPAL.
Sprache
Englisch
Identifikatoren
eISSN: 2380-7504
DOI: 10.1109/ICCV48922.2021.01528
Titel-ID: cdi_ieee_primary_9711085

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX