Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 9 von 15
2021 IEEE/CVF International Conference on Computer Vision (ICCV), 2021, p.10296-10305
2021
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Rethinking preventing class-collapsing in metric learning with margin-based losses
Ist Teil von
  • 2021 IEEE/CVF International Conference on Computer Vision (ICCV), 2021, p.10296-10305
Ort / Verlag
IEEE
Erscheinungsjahr
2021
Quelle
IEEE Electronic Library (IEL)
Beschreibungen/Notizen
  • Metric learning seeks perceptual embeddings where visually similar instances are close and dissimilar instances are apart, but learned representations can be sub-optimal when the distribution of intra-class samples is diverse and distinct sub-clusters are present. Although theoretically with optimal assumptions, margin-based losses such as the triplet loss and margin loss have a diverse family of solutions. We theoretically prove and empirically show that under reasonable noise assumptions, margin-based losses tend to project all samples of a class with various modes onto a single point in the embedding space, resulting in class collapse that usually renders the space ill-sorted for classification or retrieval. To address this problem, we propose a simple modification to the embedding losses such that each sample selects its nearest same-class counterpart in a batch as the positive element in the tuple. This allows for the presence of multiple sub-clusters within each class. The adaptation can be integrated into a wide range of metric learning losses. Our method demonstrates clear benefits on various fine-grained image retrieval datasets over a variety of existing losses; qualitative retrieval results show that samples with similar visual patterns are indeed closer in the embedding space.
Sprache
Englisch
Identifikatoren
eISSN: 2380-7504
DOI: 10.1109/ICCV48922.2021.01015
Titel-ID: cdi_ieee_primary_9710770

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX