Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 25 von 464
2021 IEEE International Conference on Big Data (Big Data), 2021, p.746-756
2021
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
GraSSNet: Graph Soft Sensing Neural Networks
Ist Teil von
  • 2021 IEEE International Conference on Big Data (Big Data), 2021, p.746-756
Ort / Verlag
IEEE
Erscheinungsjahr
2021
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • In the era of big data, data-driven based classification has become an essential method in smart manufacturing to guide production and optimize inspection. The industrial data obtained in practice is usually time-series data collected by soft sensors, which are highly nonlinear, nonstationary, imbalanced, and noisy. Most existing soft-sensing machine learning models focus on capturing either intra-series temporal dependencies or pre-defined inter-series correlations, while ignoring the correlation between labels as each instance is associated with multiple labels simultaneously. In this paper, we propose a novel graph based soft-sensing neural network (GraSSNet) for multivariate time-series classification of noisy and highly-imbalanced soft-sensing data. The proposed GraSSNet is able to 1) capture the inter-series and intra-series dependencies jointly in the spectral domain; 2) exploit the label correlations by superimposing label graph that built from statistical co-occurrence information; 3) learn features with attention mechanism from both textual and numerical domain; and 4) leverage unlabeled data and mitigate data imbalance by semi-supervised learning. Comparative studies with other commonly used classifiers are carried out on Seagate soft sensing data, and the experimental results validate the competitive performance of our proposed method.
Sprache
Englisch
Identifikatoren
DOI: 10.1109/BigData52589.2021.9671903
Titel-ID: cdi_ieee_primary_9671903

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX