Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 6 von 1155
IEEE transactions on transportation electrification, 2022-06, Vol.8 (2), p.2456-2468
2022
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Dynamic Pricing for EV Charging Stations: A Deep Reinforcement Learning Approach
Ist Teil von
  • IEEE transactions on transportation electrification, 2022-06, Vol.8 (2), p.2456-2468
Ort / Verlag
Piscataway: IEEE
Erscheinungsjahr
2022
Quelle
IEEE/IET Electronic Library (IEL)
Beschreibungen/Notizen
  • Dynamic pricing, which aims to dynamically adjust the charging price in a timely fashion to unlock the flexibility of electric vehicle (EV) customers, has been extensively studied with the rapid development of charging technologies. Many existing works on dynamic pricing focus on maximizing the social welfare of charging service providers and EV customers. Cases of high-dimensional charging environments, which are often encountered with the rapid growth of EV market penetration, have been rarely considered to date. This article proposes a new dynamic pricing framework for EV charging stations that can offer multiple charging options to customers over a finite-time horizon. The charging price can be dynamically adjusted to maximize the quality of service (QoS) with a differentiated service requirement level (SRL) whenever the arrival rates and queuing system capacities of the charging systems are given at the end of a time period. The dynamic pricing problem is formulated as a finite-discrete horizon Markov decision process (MDP) with a mixed state space. A customized deep reinforcement learning (DRL) approach is employed to solve the examined EV dynamic pricing problem. The simulation results demonstrate the effectiveness of the proposed method.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX