Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
3D Radar Velocity Maps for Uncertain Dynamic Environments
Ist Teil von
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2021, p.4854-4860
Ort / Verlag
IEEE
Erscheinungsjahr
2021
Quelle
IEEE Electronic Library (IEL)
Beschreibungen/Notizen
Future urban transportation concepts include a mixture of ground and air vehicles with varying degrees of autonomy in a congested environment. In such dynamic environments, occupancy maps alone are not sufficient for safe path planning. Safe and efficient transportation requires reasoning about the 3D flow of traffic and properly modeling uncertainty. Several different approaches can be taken for developing 3D velocity maps. This paper explores a Bayesian approach that captures our uncertainty in the map given training data. The approach involves projecting spatial coordinates into a high-dimensional feature space and then applying Bayesian linear regression to make predictions and quantify uncertainty in our estimates. On a collection of air and ground datasets, we demonstrate that this approach is effective and more scalable than several alternative approaches.