Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 17 von 36
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2021, p.4854-4860
2021
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
3D Radar Velocity Maps for Uncertain Dynamic Environments
Ist Teil von
  • 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2021, p.4854-4860
Ort / Verlag
IEEE
Erscheinungsjahr
2021
Quelle
IEEE Electronic Library (IEL)
Beschreibungen/Notizen
  • Future urban transportation concepts include a mixture of ground and air vehicles with varying degrees of autonomy in a congested environment. In such dynamic environments, occupancy maps alone are not sufficient for safe path planning. Safe and efficient transportation requires reasoning about the 3D flow of traffic and properly modeling uncertainty. Several different approaches can be taken for developing 3D velocity maps. This paper explores a Bayesian approach that captures our uncertainty in the map given training data. The approach involves projecting spatial coordinates into a high-dimensional feature space and then applying Bayesian linear regression to make predictions and quantify uncertainty in our estimates. On a collection of air and ground datasets, we demonstrate that this approach is effective and more scalable than several alternative approaches.
Sprache
Englisch
Identifikatoren
eISSN: 2153-0866
DOI: 10.1109/IROS51168.2021.9636019
Titel-ID: cdi_ieee_primary_9636019

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX