Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 13 von 1604
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021, p.9297-9306
2021
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Fair Attribute Classification through Latent Space De-biasing
Ist Teil von
  • 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021, p.9297-9306
Ort / Verlag
IEEE
Erscheinungsjahr
2021
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • Fairness in visual recognition is becoming a prominent and critical topic of discussion as recognition systems are deployed at scale in the real world. Models trained from data in which target labels are correlated with protected attributes (e.g., gender, race) are known to learn and exploit those correlations. In this work, we introduce a method for training accurate target classifiers while mitigating biases that stem from these correlations. We use GANs to generate realistic-looking images, and perturb these images in the underlying latent space to generate training data that is balanced for each protected attribute. We augment the original dataset with this generated data, and empirically demonstrate that target classifiers trained on the augmented dataset exhibit a number of both quantitative and qualitative benefits. We conduct a thorough evaluation across multiple target labels and protected attributes in the CelebA dataset, and provide an in-depth analysis and comparison to existing literature in the space. Code can be found at https://github.com/princetonvisualai/gan-debiasing.
Sprache
Englisch
Identifikatoren
eISSN: 2575-7075
DOI: 10.1109/CVPR46437.2021.00918
Titel-ID: cdi_ieee_primary_9578650

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX